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Abstract
Asymptotic behaviour of a new class of anomalous diffusion equations for
subdiffusive transport defined in terms of generalized distributed fractional-
order time derivatives is considered. The effect of slowly varying factors on
the scaling function of asymptotic solutions is demonstrated. The origin of
slowly varying scaling factors in the CTRW models is discussed.

PACS number: 46.35.+z

Notation

Df (x) := df (x)/dx;
F(f ) := f̂ ; f̂ (k) := ∫

eik·xf (x) dx;
F̂ (p, k) := ∫ ∞

0 e−pt
[∫

R
d eik·xF (t, x) dx

]
dp;

L(f ) := f̃ ; f̃ (p) := ∫ ∞
0 e−ptf (t) dt ;

f ∼y g if g(x) > 0 and limx→y f (x)/g(x) = 1.

1. Introduction

Anomalous diffusion is commonly modelled by scale-invariant equations. This restriction
can be traced back to a simplified view of asymptotics of waiting times in the continuous
time random walk (CTRW) models which assumes an exact power law behaviour (and
stable Lévy probability densities) while ignoring unbounded slowly varying factors such
as logarithms. However recent work has provided examples of logarithmic growth of mean
square displacement [1] (ultra-slow kinetics). In the framework of CTRW, a logarithmic
decay of cumulative waiting time distribution is considered in [2]. In some rigorous stochastic
models of CTRW (e.g., see [3]), slowly varying factors in the scaling functions disappear in
the process of passing from an integer-valued counting process to a continuous subordinator
(the inverse time process). The resulting limitation of scaling functions is an artefact of
the construction of the compound stochastic process. A more complicated stochastic model
of CTRW for ultra-slow kinetics with a slowly varying scaling factor has been constructed
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[4]. More general distributed-order diffusion equations appear in the context of asymptotics
of viscoelastic wave propagation [5]. Distributed-order derivatives provide a mathematical
model of diffusion equations with scaling functions which are not power functions.

Distributed-order fractional derivatives constitute a new class of pseudo-differential
operators leading to more complex scaling laws. Distributed-order derivatives have found
applications in modelling material response in dielectrics, viscoelasticity and dynamics
[6–10]. Distributed-order derivatives have also been applied in anomalous diffusion [7],
in particular for modelling ultra-slow kinetics [11, 12]. Diffusion equations with distributed-
order derivatives with respect to space and time were proposed in [13]. Existence and
uniqueness for initial-value problems and multi-point boundary-value problems for distributed-
order fractional derivatives were made in [14] and a numerical method for solving such
equations was proposed in [15].

In this work, the concept of a distributed-order derivative has been generalized by using
more general measures on the interval of fractional orders. The new concept includes fractional
multi-derivative equations, ultra-slow kinetics as well as equations with symbols which are
regularly varying functions of the variable p corresponding to the time derivative at p → 0.
Since the concept of a distributed-order fractional derivative has been reserved for a more
restricted class of operators we shall use the term ‘generalized distributed-order derivative’. In
particular, generalized distributed-order derivatives include multi-term fractional differential
operators, studied in [16] as well as distributed-order derivatives.

The asymptotic expressions for the solutions of the signalling problem and the initial-value
problem involve the solutions of simpler problems, however, with modified scaling factors.
The long-range asymptotics of the solutions of the signalling problem and the large-time
asymptotics of the initial-value problem are affected only by the lower end of the spectrum of
fractional orders. The scaling factors are regularly varying functions with non-trivial slowly
varying factors.

We show that the concept of generalized distributed-order derivatives leads a new class
of anomalous diffusion equations with scaling of the type t/W(x),W(x) ∼∞ x2/αL(x) for
large propagation distance x and x/w(t), w(t) = tα/2l(t) for large time t, where L(x), l(t) are
slowly varying functions at infinity.

A further generalization of the pseudo-differential operators replacing the time derivative
would lead to asymptotic solutions involving a general regularly varying scaling function
W(x) = xαL(x), where L is a slowly varying function: L(λx)/L(x) → 1 for x → ∞ and
λ > 0. The pseudo-differential operators appearing in the corresponding diffusion equations
involve regularly varying symbols. CTRW provide a model of this kind of diffusion.

In section 2, the generalized distributed-order diffusion equations are defined. In sections 3
and 4, the solutions and the connections to convolution semigroups are considered. Long-
range asymptotics of the signalling problem and large-time asymptotics of the initial-value
problems are studied in sections 5–7.

Some technicalities needed for the proofs are explained in the appendices.

2. A diffusion equation with a generalized scaling property

We shall consider the initial-value problem∫
[α,1]

Dβu(t, x) dh(β) = ∇2u(t, x) + F(x), x ∈ R
d , t � 0 (1)

u(0, x) = u0(x), x ∈ R
d (2)
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as well as the signalling problem∫
[α,1]

Dβu(t, x) dh(β) = ∇2u(t, x) + F(x), x � 0, t � 0 (3)

u(t, 0) = 1, t � 0, (4)

0 < α < 1, where Dβ denotes the Caputo fractional derivative [17]

Dβf (t) :=
∫ t

0

(t − s)−β

�(1 − β)
Df (s) ds, 0 < β < 1, (5)

and h is a right-continuous non-decreasing function on the interval [α, 1] satisfying h(β) = 0
for β < α. The distributed-order derivative as defined in [18] corresponds to dh(β) =
f (β) dβ, while multi-term fractional differential operators correspond to piecewise constant
functions h.

Equation (1) is equivalent to the equation∫ t

0

[∫
[α,1]

s−β

�(1 − β)
dh(β)

]
Du(t − s, x) ds = ∇2u(t, x) + F(x). (6)

We shall consider mild solutions of equations (1) and (2). Mild solutions of (1) and (2)
are defined as the solutions of the Laplace-transformed equation

g(p)[ũ(p, x) − u(0+, x)/p] = ∇2ũ(p, x) +
F(x)

p
, (7)

where

ũ(p, x) :=
∫ ∞

0
e−ptu(t, x) dx (8)

and

g(p) :=
∫

[α,1]
pβ dh(β). (9)

Since h has at most a countable number of jump discontinuity points an on [α, 1],

g(p) = pα

[ ∞∑
n=1

pan�n +
∞∑

n=0

pan

∫
[an,an+1]

pγ dhn(γ )

]
, (10)

where a0 = α,�n = limε→0[h(an + ε) − h(an − ε)] and the functions hn are continuous non-
decreasing and satisfy the normalization condition hn(an) = 0. If dhn(β) = ψn(β) dβ, n =
0, 1, . . . , then the operator

∫
[α,1] Dβ dh(β) is a sum of products of fractional derivative operators

and distributed-order fractional derivative operators.

3. Solutions of the initial-value problem

The one-dimensional solution of equations (1) and (2) with u0 = U0δ(x), F (x) = F0δ(x) is
given by the equation

u(t, x) = 1

2π i

∫
B

dp

p
ept 1

2π

∫ ∞

−∞

eikx

k2 + g(p)
[U0g(p) + F0] dk, (11)

where the Bromwich contour B runs upwards along the imaginary axis in the complex p-plane
with a detour to the right of p = 0.

Note that Re g(iω) = ∫
[α,1] |ω|β cos(πβ/2) dh(β) > 0 for ω ∈ R. Choose the square root

in such a way that Re g(p)1/2 > 0. Closing the contour of the inner integral by a half-circle
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in the upper half of the complex k-plane if x > 0 and in the lower half k-plane if x < 0, the
residue calculus yields

u(t, x) = U(1)(t, |x|) (12)

U(1)(t, r) := 1

4π i

∫
B

1

g(p)1/2
ept−g(p)1/2r [U0g(p) + F0]

dp

p
. (13)

The three-dimensional Green’s functions can be obtained from the one-dimensional
Green’s functions (12) by a simple differentiation [19]:

u(3)(t, x) = U(3)(t, |x|), x ∈ R
3 (14)

U(3)(t, r) := − 1

2πr

∂

∂r
U(1)(t, r). (15)

Equation (14) is a special case of a more general relation

G(d+2)(t, r) = − 1

2πr

∂

∂r
G(d)(t, r), (16)

which holds for even and odd dimensions [20].

4. Distributed derivatives, convolution semigroups and infinitely divisible
probability densities

Definition 4.1. A non-negative function f ∈ C∞(R+; R) is a Bernstein function if its
derivatives satisfy the equations (−1)nDnf (x) � 0 for n ∈ Z+.

Since

g(p) =
∫

[α,1[
pβ dh(β) + bp (17)

and b = h(1) − h(1−) � 0, g is a Bernstein function.
Assume that g is a Bernstein function satisfying g(0) = 0. This condition is satisfied

if either α > 0 or h(0) = h(0−). By a theorem on the integral representation of Bernstein
functions ([21], theorem 2.9.8)

g(p) = ap +
∫

{0,∞{
[1 − e−λp]m(dλ),

where m is a positive Radon measure satisfying the condition∫
}0,∞{

λ

1 + λ
m(dλ) < ∞. (18)

Furthermore e−g(p) is the Laplace transform of an infinitely divisible probability density and m
is its Lévy measure. It follows that the Laplace-domain multiplication f̃ (p) → e−sg(p)f̃ (p)

defines a strongly continuous semigroup {Ts}s�0 preserving positivity and normalization of
probability densities f [21].

We shall now determine the measure m and the constant a.
Since [1 − e−x]/x � e−ϑx � 1 (0 � ϑ � 1), the difference quotient

[e−λp − e−λ(p+�)]/�
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is majorized by the function λ e−λp integrable with respect to m(dλ) over ]0,∞[. Hence

g′(p) = a +
∫

}0,∞[
λ e−λpm(dλ).

Equation (17) implies limp→∞ g′(p) = b. On the other hand, equation (18) and the obvious
inequality ex/(1 + x) � 1 imply that∫

}0,∞[
λ e−λm(dλ) < ∞.

Hence, by the Lebesgue-dominated convergence theorem, a = limp→∞ g′(p) = b.
The Laplace transform∫ ∞

0
e−λpλm(dλ) =

∫
[α,1[

βpβ−1 dh(β)

can be inverted with the ansatz λm(dλ) = φ(λ) dλ. Applying the Fubini theorem and a
complex contour deformation:

φ(λ) = 1

2π i

∫ i∞+ε

−i∞+ε

[∫
[α,1[

βpβ−1 dh(β)

]

=
∫

[α,1[

β sin(π(1 − β))

π

[∫ ∞

0
e−λrrβ−1 dr

]
dh(β)

=
∫

[α,1[

λ−β

�(1 − β)

β

�(β)
dh(β), λ � 0

5. Regularly varying analytic functions

Asymptotic analysis of the solution of equation (1) requires some background in regular
variation theory.

Definition 5.1 [24]. An analytic function f defined and non-vanishing in a sector Sγ :
|arg p| < γ, |p| > R, of the complex p-plane is said to be

(i) slowly varying at ∞ if

lim
p → ∞
p ∈ Sγ

f (λp)/f (p) = 1

uniformly with respect to |arg p| � ρ for every ρ < γ for all λ > 0;
(ii) regularly varying at ∞ if the limit of f (λp)/f (p) as p → ∞ in Sγ is finite for all λ > 0.

Theorem 5.1 [24]. If f is regularly varying at ∞ then there is a function l(p) slowly varying
at ∞ and a real number α such that f (p) = pαl(p).

The real number α is called the index of the function f at ∞. The class of all the analytic
functions in Sγ regularly varying with index α is denoted by RVα

∞,γ . SV∞,γ := RV0
∞,γ is

the class of non-vanishing analytic functions in Sγ slowly varying at infinity. The class RVα
0,γ

consists of all the analytic functions z → f (1/z) such that f ∈ RV−α
∞,γ and SV0,γ := RV0

0,γ .

Definition 5.2. An analytic function f (p) defined and not vanishing anywhere in SR:
|arg p| < γ, |p| < R,R, γ > 0, is said to be

(i) slowly varying at 0 if z → f (1/z) is slowly varying at ∞;
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(ii) regularly varying at 0 with index α if z → f (1/z) is regularly varying at ∞ with index
−α.

The notion of a regularly varying real function defined on the real line is discussed in
more detail in [25, 26]. In the case of real functions we shall ignore the parameter γ .

Let H(ξ) := h(ξ + α).

Proposition 5.2. If H ∈ RVρ

0,γ , ρ > 0, and, more specifically,

H(ξ) = ξρL(ξ)

with L slowly varying at 0, then g is analytic in a sector S with γ > π/2. Furthermore,

g(p) = pα|ln p|−ρL(1/|ln p|).

Proof. By the Karamata theorem on the Laplace transforms of regularly varying functions
[26]

g(p) = pα

∫
[0,1−α]

eξ ln p dh(ξ) = pα|ln p|−ρL(1/|ln p|).
�

Corollary 5.3. Under the hypotheses of proposition 5.2 g(p) = pαl(p), where l is slowly
varying at 0.

6. Long-range asymptotics of the solutions of the signalling problem
for the generalized wave-diffusion equation

In order to get a better insight into the solution we now consider the asymptotic behaviour of
the solution of equations (1) and (2) with F(x) ≡ 0, u0 = U0δ for |x| → ∞.

The solution of the signalling problem (3), (4) is given by the equation

u(t, x) = 1

2π i

∫
B

ept−xg(p)1/2 dp

p
, x � 0. (19)

Substitute p = z/w into equation (12). Consider the term in the exponent Q := g(p)1/2|x| =
|x|zα/2l(z/w)1/2/wα/2 for large w ∈ R+. Since l is slowly varying at 0, we shall eliminate it
so that Q is replaced by Q1 = |x|zα/2/q(w), where

q(w) := wα/2/l(1/w)1/2. (20)

We shall then solve the equation q(w) = r for large w, to obtain a function W(r) such
that q(W(r)) ∼∞ r . Using the scaling function W we can eliminate q(w) by substituting
w = W(|x|). A transformation of the integration variable will yield a function of t/W(|x|). We
shall show that the L2 error introduced by the two consecutive simplifications of equation (19)
tends to 0 as |x| → 0. The scaling function W defined by the equation

W(r) := inf{w ∈ [0,∞[ | q(w) > r} (21)

is non-decreasing. Since q ∈ RVα
∞,γ , by theorem 1.5.12 in [26] W ∈ RV1/α

∞ and q(W(r))/r →
1 as r → ∞. Substituting g(p) = pαl(p), l ∈ SV0, 0 < α � 1, p = z/w, l(z/w) ∼ l(1/w)

and defining W by equation (21) we get the asymptotic behaviour as described in the following
theorem:

Theorem 6.1. If g(p) = pαl(p), l ∈ SV0, 0 < α � 1, l(p) > 0 for p > 0, then

‖u(·, x) − U(·, x)‖L2(R+;R) → 0 for x → ∞, (22)
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where

U(t, x) = Pα/2(t/W(x)), (23)

W(x) = x2/αL1(x), L1 ∈ SV∞ and Pγ is the one-sided γ -stable Lévy probability cumulative
distribution function, 0 < γ < 1.

The asymptotic behaviour of the function L1 can sometimes be expressed in terms of
l. If l is a product of powers of logarithm and repeated logarithms then propositions 1.5.15
and 2.3.5 of [26], reported in appendix C, can be applied. Let l1(w

α) := 1/l(1/w). Clearly
l1 ∈ SV∞. Theorem C.2 shows that W(x) ∼∞ x2/αl

�

1(x
2)1/α , where l

�

1 denotes the de Bruijn
conjugate of l1 (definition C.1). By theorem C.3, l

�

1 ∼∞ 1/l1, hence ultimately

W(x) ∼∞ x2/α/ l1(x
2)1/α = x2/αl(1/x2/α)1/α. (24)

Equation (24) holds in particular for g(p) given by equation (10) with a regularly varying h.

7. Large-time asymptotics of the solutions of the initial-value problem

Long-time asymptotic solutions of the Cauchy problem will be derived from theorem 4.2 in
[27]. Let b(p) := 1/g(p), p = r eiφ, 0 � φ � π . Since

Im
g(p)

p
=

∫
[α,1]

rβ−1 sin((β − 1)φ) dβ � 0

and g(p)/p tends to 0 as p → ∞ along the real axis, the function g(p)/p is the Laplace
transform of a completely monotone function [28]. By theorem D.3, the function b(p)/p

is the Laplace transform of a Bernstein function [21] and b(p) is the Laplace transform of
a completely monotone locally integrable function a(t). Let A(t) := ∫ t

0 a(s) ds. If g(p) =
pαl(p), l ∈ SV0, l(p) > 0 for p > 0 and 0 < α < 1, then b(p) = p−α/ l(p). Therefore, by
the Karamata Tauberian theorem (theorem 1.7.1 in [26]) A(t) ∼∞ tα/[l(1/t)�(1 + α)]. But
the function A is non-negative and monotone, hence a(t) ∼∞ tα−1/[l(1/t)�(α)].

Since a is locally integrable and completely monotone, it is of positive type in the sense
of [28] (appendix D) and therefore, by theorem D.2,

lim
ε→0+

Re Ã(iω + ε) � 0 for all ω ∈ R

Furthermore, A ∈ RVα−1
∞ with 0 < α < 1 by the monotone density theorem (theorem B.1).

The following theorem can be found in [27] (theorem 4.2),

Theorem 7.1. If (1) lim infε→0[a + Re f̃ (iω + ε)] � 0 for ω ∈ R; (2) the function
F(t) = a +

∫ t

0 f (s) ds is positive for t > T , for some T > 0, and F ∈ RVβ
∞ with −1 < β � 1,

(3) u is the solution of the equation

ut = a0∇2u + f ∗ ∇2u

for x ∈ R
d , then the scaled solution w(T )du(T t, w(T )x) with w(T ) = [tF (t)�(β + 1)]1/2

tends to g(t, x)
∫

u(0, x) dx, where g(t, x) = F−1(Eβ+1(−|k|2tβ−1), in every Sobolev space
H−s(Rd) such that s > d/2.

We recall that the Sobolev space H−s is the space of tempered distributions g whose Fourier
transform has a finite norm [29]

‖g‖H−s :=
[∫

R
d

(1 + k2)−s |ĝ(k)|2 dk

]1/2

.
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By theorem 7.1, the scaled solution

w(T )du(T t, w(T )x)

of equations (1) and (2), with the scaling function

w(t) = tα/2/l(1/t)1/2, (25)

tends in H−s , s > d/2, to

V (d)(t, x) := U0F−1(Eα(−|k|2tα) (26)

as T → ∞, where Eα denotes the Mittag–Leffler function [30] and U0 = ∫
u0(x) dx. Since

f (k) := Eα(−|k|2tα) ∼ |k|−2t−α/�(1 − α) for |k| → ∞ and Eα(0) = 1, the inverse Fourier
transform of f belongs to H−s(Rd; R) for s > d/2 − 2.

In the one-dimensional case

V (1)(t, x) = U0

2
t−α/2Mα/2(|x|/tα/2), (27)

where the function Mγ , 0 < γ < 1, is a special case of the Wright function W :
Mγ (z) = W−γ,1−γ (−z) [19, 31]. Equation (27) can be obtained from equation (26) by
transforming the inverse Fourier transform to a Laplace transform by means of the identity
(e.g., [17], equation (1.95))

E2γ (z) = 1
2 [Eγ (z1/2) + Eγ (−z1/2)], −π < arg z < π,

with z1/2 = ik, and then taking into account the Laplace transform pair W−µ,ν(−t) ÷
Eµ,µ+ν(−p), valid for 0 < µ < 1 [32, 33].

The function Mβ decays very rapidly [31]

Mβ(y) ∼ 1√
2π(1 − β)ββ2β−1

Yβ−1/2 e−Y , y → ∞ (28)

Y := (1 − β)[ββ y]1/(1−β) (29)

while it is finite at 0

Mβ(0) = 1/�(1 − β),

and the probability density u(t, ·) has a finite second-order moment. Since∫
w(T )du(T t, w(T )x)x2 dx →

∫
U(1)(t, x)x2 dx = ctα

as T → ∞, where c is a positive number,∫
u(tT , y)y2 dy ∼ c(tT )α/ l(1/T ) T → ∞.

Substituting t = 1 and replacing T by t leads to the asymptotic estimate of the mean square
displacement

〈r2〉 ∼ ctα/ l(1/t), (30)

which deviates from the power law.
The three-dimensional asymptotic solution is given by the formula (cf [19])

U(3)(t, x) = − U0

2πr

∂f (t, r)

∂r
= −U0t

−α

4πr
M ′

α/2

( r

tα/2

)
. (31)
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The derivative M ′
β decays fast and assumes a finite value −1/�(1 − 2β) at 0. Consequently,

U(d) ∈ Lq(Rd; R) for d = 1, 3 and for arbitrary q > 0. By theorem 4.2 and proposition 2.1
in [27],

‖u(t, ·) − v(d)(t, ·)‖Lq (Rd ;R) = o[t−dα(q−1)/2q ], (32)

where

v(1)(t, x) = U0

2
w(t)−1Mα/2(|x|/w(t)) (33)

v(3)(t, x) = −U0

4π
w(t)−3 w(t)

|x| M ′
α/2(|x|/w(t)) (34)

uniformly for t ∈ [a, b], 0 < a < b < ∞. The mean square displacement 〈r2〉 ∼ w(t)2 as
t → ∞ in both cases.

The asymptotic solution of the Cauchy problem for arbitrary dimension d is

U(d)(t, x) = U0
√

π

(2π)d/2|x|d/2−1

∫ ∞

0
Jd/2−1(κ|x|)Eα(−κ2tα)κd/2 dκ. (35)

For every dimension d the integral of U(d) is 1.
The Laplace pair

Eγ (−atγ ) ÷ pγ−1

a + pγ

implies the asymptotic relation

Eγ (−atγ ) ∼ t−γ

a�(1 − γ )
, t → ∞.

In view of the large-argument asymptotics of the Bessel function the integral is absolutely
convergent for d < 3. The function k → Eα(−|k|2tα) is square integrable on R

d only if
d < 4. Hence, we do not expect to obtain a square-integrable function U(d) for d � 4.

Since Jν(x) = O[x−1/2] for x → ∞, the integral in equation (35) is absolutely integrable
if d < 4α − 1.

If l(p) ≡ 1 then the asymptotic limit is the exact solution of the time-fractional diffusion
equation Dαu = ∇2u with the initial data u0(x) = U0δ(x).

8. CTRW models of non-scale-invariant anomalous diffusion

The continuous time random walk (CTRW) model assumes an ensemble of particles (walkers)
moving in the space R

d by a sequence of jumps. The probability density Q(τ, ξ) in spacetime
(τ ∈ R+, ξ ∈ R

d) of the walker executing a single jump at a distance ξ in a time interval of
duration τ . The ‘waiting time’ τ can be attributed to the particle being trapped at a site before
executing an instantaneous jump, to a finite duration of the jump (e.g., a finite velocity) or to
other reasons. The choice of the interpretation is irrelevant for the derivation of the master
equation. The term ‘waiting time’ was suggested by the first interpretation.

According to the Montroll–Weiss master equation for the Laplace–Fourier transform

P̂ (p, k) =
∫ ∞

0
e−pt

[∫ ∞

−∞
eik·xP (t, x) dx

]
dt (36)

of the particle density P(t, x) is given in terms of the Laplace transform

q̃(p) =
∫ ∞

0
e−pτ q(τ ) dτ
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of the waiting time probability density q(τ) and the Laplace–Fourier transform Q̂(p, k) of the
joint probability density Q(τ, ξ) of a single jump ξ in a time τ ,

P̂ (p, k) = 1 − q̃(p)

p

1

1 − Q̂(p, k)
, (37)

where q(τ) is the probability density for the time interval τ between two consecutive jumps,
hence it is the marginal probability density

q(τ) =
∫

Q(τ, ξ) dξ. (38)

A careful derivation of the master equation can be found in a recent paper ([34],
equation (23)).

It is usually assumed [35, 36] that the probability density q is a stable one-sided Lévy
probability. This assumption entails that the scaling functions are power functions. There is,
however, no compelling reason for this limitation.

Assuming for simplicity that the waiting time and the jump size are two independent
random variables and Q̂(p, k) = q̃(p)ŵ(k), where w(ξ) is the probability density of a jump
ξ . Assume in addition that q(τ) ∼ τ−1−βl(1/τ)/�(−β), 0 < β < 1, l ∈ SV0, q̃(p) ∼
1 − pβl(p) (p → 0), ŵ(k) ∼ 1 − σ 2k2 (k → 0). The Montroll–Weiss master theorem now
implies that

[pβl(p) + σ 2k2]P̂ (p, k) = pβ−1l(p).

Let L denote the pseudo-differential operator with the symbol pβl(p). The probability
distribution P(t, x) defined as the inverse Laplace-inverse Fourier transform of P̂ (p, k)

satisfies the equation

LP(t, x) = σ 2∇2P(t, x) + s(t), (39)

where

s(t) ∼∞
t
−β
+ l(1/t)

�(1 − β)
.

The operator L is a generalization of the distributed-order fractional derivative considered
earlier.

The operator with the symbol g(p) has all the relevant properties of pβ in the theory
of anomalous diffusion for coupled CTRW developed in [22, 23], indicating further possible
generalizations of anomalous diffusion equations. Thus, the probability of the walker reaching
A ⊂ R

d within the interval of time [0, t] is
∫
A

∫ ∞
0 dsg(D)Tsf (t, x) dx for some original

probability spacetime density f (corresponding to the number of steps s = 0) and the Fourier–
Laplace transform of the spacetime density is g(p)/[p(g(p) + k2)].

9. Conclusions

Slowly varying factors in the time-derivative operator of the anomalous diffusion equation
affect the scaling function in the asymptotic form of the solution. The asymptotic shape of the
distribution function retains the pattern of scale-invariant diffusion, but the scaling function
deviates from the power law.

Slowly varying factors in the scaling function also originate from the asymptotic tail
behaviour of the probability distribution of the CTRW waiting times.
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Appendix A. Proof of theorem 6.1

Changing the integration variable p = z/w in equation (12), where w is a positive number,
yields the formula

u(t, x) = 1

4π i

∫
B

exp(zt/w − g(z/w)1/2x)
dz

z

≡ 1

4π i

∫
B

exp(zt/w − z1/2l(z/w)1/2x/w1/2)
dz

z
. (A.1)

Let

u1(t, x;w) := 1

4π i

∫
B

exp(zt/w − z1/2x/q(w))
dp

p
, (A.2)

where the function q(w) is defined by equation (20). By the Parseval theorem

‖u(·, x) − u1(·, x;w)‖2
L2 � 1

4π2

∣∣∣∣
∫
B

ezt/w
[
e−zα/2l(z/w)1/2x/wα/2 − e−zα/2l(1/w)1/2x/wα/2]dz

z

∣∣∣∣
� e2εt/w 1

2π2

∫ ∞

0

∣∣∣e−(iy+ε)α/2l(1/w)1/2x/wα/2 − e−(iy+ε)α/2l((iy+ε)/w)1/2x/wα/2
∣∣∣ dy

y2 + ε2

= e2εt/w 1

2π2

∫ ∞

0
e−(iy+ε)α/2l(1/w)1/2x/wα/2

× [
1 − e−(iy+ε)α/2l(1/w)1/2[l((iy+ε)/w)1/2/l(1/w)1/2−1]x/wα/2] dy

y2 + ε2

for some ε > 0. Note that Re(iy + ε)α/2 ∼ yα/2 cos(πα/2) for large y. Let w → ∞.
The last expression tends to 0 by the Lebesgue-dominated convergence theorem, hence
‖u(·, x) − u1(·, x;w)‖2

L2 → 0.
Substituting w = W(x) into equation (A.2) and taking into account that W(x) → ∞ for

x → ∞ and

lim
x→∞ x/q(W(x)) = 1,

it follows by the Lebesgue-dominated convergence theorem that

‖u(·, x) − u2(·, x)‖2
L2 → 0,

where u2(t, x) := u1(t, x;W(x)) = Pα/2(t/W(x)).

Appendix B. Monotone density theorem

Theorem B.1 [26, 37]. If
∫ x

0 f (y) dy ∼∞ cxal(x), a ∈ R, l ∈ SV∞, and f is monotone on
[X,∞[ for some X > 0, then f (x) ∼∞ caxa−1l(x).



5562 A Hanyga

Appendix C. de Bruijn conjugate functions

Definition C.1. If l ∈ SV∞ then the de Bruijn conjugate l� ∈ SV∞ is a solution of the
equations

lim
x→∞ l(x)l�(xl(x)) = 1, lim

x→∞ l�(x)l(xl�(x)) = 1.

Theorem C.1 [26].

(i) l� is defined uniquely up to asymptotic equivalence;
(ii) l�� ∼ l.

Theorem C.2 ([26], proposition 1.5.15). Let a, b > 0, l ∈ SV∞ and f (x) ∼∞ xabl(xb)a . If
g is an asymptotic inverse of f then

g(x) ∼∞ x1/(ab)l�(x1/a)1/b.

Theorem C.3 ([26] proposition 2.3.5 and appendix 5.2). If

l(x) =
n∏

k=1

(lnk(x))ak ,

where

lnk := ln ◦ ln · · · ◦ ln︸ ︷︷ ︸
k times

then l� ∼∞ 1/l.

Appendix D. Functions of positive type

Definition D.1. A measurable function f : R+ → R is of positive type if∫ ∞

−∞

∫ ∞

0
f (s)φ(t − s)φ(t) ds dt � 0

for every square-integrable function φ with compact support on R.

Theorem D.1 ([28], proposition 16.3.1). If f ∈ L1
loc(R+) is non-negative, non-increasing and

convex, then f is of positive type.

Theorem D.2. If f : R+ → R is of positive type, then

lim inf
p→iω

Re f̃ (p) � 0.

The last theorem is a consequence of theorem 16.2.6 in [28]).

Theorem D.3 ([38], theorem 6; [39]). If the functions f, g : R+ → R satisfy the Volterra
equation f ∗ g = tθ(t), then the function f : R+ → R is completely monotone and
limt→∞ f (t) = a, 0 < a � ∞, and locally integrable if and only if g is a Bernstein function
with limt→∞ g(t) = 1/a.
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Birkhäuser)
[34] Henry B I, Langlands T A M and Wearne S L 2006 Phys. Rev. E 74 031116
[35] Metzler R and Klafter J 2000 Phys. Rev. E 61 6308
[36] Piryatinska A, Saichev A I and Woyczynski W A 2005 Physica A 349 375
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